Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[bis[µ-1,4-bis(1,2,4-triazol-1-ylmethyl)benzene- $\kappa^2 N^4$: $N^{4'}$]dichloridomanganese(II)]

Bin Ding* and Hong-Ai Zou

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300071, People's Republic of China Correspondence e-mail: qsdingbin@yahoo.com.cn

Received 29 June 2010; accepted 4 July 2010

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.090; data-to-parameter ratio = 14.5.

The Mn^{II} atom in the title coordination polymer, $[MnCl_2(C_{12}H_{12}N_6)_2]_n$, lies on a center of inversion in a sixcoordinate octahedral environment comprising four N-atom donors from four N-heterocyclic ligands and two chloride atoms. Bridging by the ligands results in a layer structure of a $14.79(5) \times 14.79(5)$ Å (4,4) rhombic net topology, with the Mn^{II} atoms all lying on a plane. The parallel layers stack in an ABCABC... manner through interlayer C-H···N and C-H···Cl hydrogen bonds.

Related literature

For the preparation of highly stable, infinite metal-ligand frameworks by hydrothermal methods, see: Chui et al. (1999); Gerrard & Wood (2000); Gutschke et al. (1996). For a threedimensional self-catenating network involving the 1,4-bis-(triazol-1-ylmethyl)benzene ligand (L) which contains two different types of layers, see: Li et al. (2005). For a manganese inorganic-organic hybrid compound containing the flexible L ligand, $[Mn_2(H_2O)_4(L)_3]$ [SiMo₁₂O₄₀]·4H₂O, see: Dong & Xu (2009).

Experimental

Crystal data

 $[MnCl_2(C_{12}H_{12}N_6)_2]$ V = 1392.8 (5) Å³ $M_r = 606.39$ Z = 2Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 7.5863 (16) Å $\mu = 0.70 \text{ mm}^{-1}$ b = 21.925(5)Å T = 294 Kc = 8.8442 (18) Å $0.20 \times 0.14 \times 0.08 \; \rm mm$ $\beta = 108.775 (4)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.645, T_{\max} = 1.000$

Refinement

D-

C9

C1

$R[F^2 > 2\sigma(F^2)] = 0.040$	178 parameters
$wR(F^2) = 0.090$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
2587 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

7263 measured reflections

 $R_{\rm int} = 0.050$

2587 independent reflections

1660 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$-H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$-H9\cdots N5^{i}$	0.93	2.61	3.523 (4)	168
$-H11\cdots Cl1^{ii}$	0.93	2.77	3.635 (3)	155

Symmetry codes: (i) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 2005); software used to prepare material for publication: SHELXTL.

This present work was supported financially by Tianjin Educational Committee (20090504).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2796).

References

Brandenburg, K. & Berndt, M. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chui, S. S. Y., Lo, S. M. F., Charament, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148-1150.

Dong, B. X. & Xu, Q. (2009). Cryst. Growth Des. 9, 2776-2782.

Gerrard, L. A. & Wood, P. T. (2000). Chem. Commun. 21, 2107-2108.

Gutschke, S. O. H., Molinier, M., Powell, A. K., Winpenny, R. E. P. & Wood, P. T. (1996). Chem. Commun. 7, 823-824.

Li, B. L., Peng, Y. F., Li, B. Z. & Zhang, Y. (2005). Chem. Commun. 18, 2333-2335.

Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, m932 [doi:10.1107/S1600536810026322]

Poly[bis[μ -1,4-bis(1,2,4-triazol-1-ylmethyl)benzene- $\kappa^2 N^4$: N^4 ']dichloridomanganese(II)\]

B. Ding and H.-A. Zou

Comment

The design and synthesis of highly-dimensional metal-organic framework (MOF) structures is becoming an increasing popular field of research in view of the formation of fascinating structures and their potentially useful ion-exchange, adsorption, catalytic, fluorescence, and magnetic properties. Triazole-containing ligands, such as 1,4-bis(triazol-1-ylmethyl)benzene, 1,2-bis(1,2,4-triazole-1-yl)ethane, 1,2-bis(1,2,4-triazole-1-yl)hexane and related species, represent another class of N-donor organic linkers for constructing coordination polymers, and these ligands have been proved to be able to produce architectures different from those obtained from pyridyl-based ligands. With two methylene sp^3 -carbon atoms, the ligand 1,4-bis(triazol-1-ylmethyl)benzene *L* is highly flexible and can assume variable *trans* and *gauche* conformations. It can generate unusual 2-D polyrotaxane networks, 3-D entangled networks and 3-D self-catenating network containing two different types of layers (Li *et al.*, 2005). However, to date, only one manganese hybrid compound [Mn₂(H₂O)₄(*L*)₃][SiMo₁₂O₄₀].4H₂O with the flexible *L* ligands has been reported in the present of molybdate recently (Dong *et al.*, 2009).

Several synthetic methods can be used to obtain new polymeric complexes. In the previous literatures the hydrothermal method has been a promising technique in preparing highly stable, infinite metal–ligand frameworks (Gutschke *et al.*, 1996; Chui *et al.*, 1999; Gerrard *et al.*, 2000). Taking the advantage of bridging ability of *L* in the chemical design of metal-organic molecular assemblies, under hydrothermal condition, we synthesized a novel 2-D (4,4) square grid layer manganese(II) coordination polymer, poly-[[bis[μ_2 -1,4-bis(triazol-1-ylmethyl)benzene-bis(chloride)manganese(II)].

Selected bond distances and bond angles are listed in Table 1. Fig. 1 shows the coordination environment of the metal ions in **1**. The asymmetric unit of (I) contains one Mn^{II} cation, four-half of *L* ligands and two chloride atoms. The Mn(II) ion, which resides at an inversion center, is octahedrally coordinated by two pairs of equivalent imine nitrogen atoms from *L* ligands in the equatorial plane (N1, N6ⁱ, N6ⁱⁱ, N1ⁱⁱⁱ) and two equivalent terminal chloride ions occupying the axial positions (C11 and C11ⁱⁱⁱ). Two triazole rings of the ligand rotate along the C—C single bond axis with the dihedral of 52.1°. The benzene groups have different twists relative to their adjacent triazole ring with the dihedral of 70.2° and 71.0°, respectively. The *cis* N–Mn–N bond angles range from 87.4 (8)° to 92.5 (2)°, and the axial Mn–Cl(chloride) distances (2.5666 (5) Å) are much longer than the equatorial Mn–N(imine) distances (2.251 (3) and 2.268 (3) Å), indicative of the distorted octahedral environment with a slight axial elongated. Each Mn(II) ion is linked by four equivalent *L* ligands in the *trans*- conformation to its four neighboring Mn(II) ions, thus affording 2-D (4,4) grid layers parallel to the crystallographic *ab* plane (Fig. 2). All the Mn(II) ions in each layer are strictly coplanar.

The grid motif has the dimensions of 14.79 (5) Å × 14.79 (5) Å (metal- to-metal distances), and the Mn···Mn corner angles (84.3 (7)° and 95.6 (3)°) within the motif are close to 90°, suggesting a rhombic geometry. The grid layers are closely stacked in an offset way (Fig. 3), with the cavity of each layer being occupied by the groups from the two neighboring layers, which are generated from the original one by unit translations along the a direction. Due to the interdigitation between neighboring layers. The nearest interlayer Mn···Mn distances are 7.568 (2) and 8.844 (2)Å between the neighboring layers [Mn1···Mn1(x + 1, y, z)] and between the next-nearest neighboring layers [Mn1···Mn1(x, y, z - 1)], respectively, both being

much shorter than the intralayer one. Further inspection into the structure revealed that there exist interlayer weak C–H···N and C–H···Cl hydrogen bonds. The uncoordinated *L* nitrogen atoms and chloride ions of one layer, forms the hydrogen bonds with a triazole C–H groups from different *L* ligands of the neighboring layer: C(9)–H(9)···N(5) (1 + x, 1/2 - y, 1/2 + z) and C(11)–H(11)···Cl(1) (x, 1/2 - y, 1/2 + z). The C—H···N and C—H···Cl distances and the correpsonding angle are, respectively, 3.523 (4) Å and 168.0 (8)° for the former, and 3.635 (2) Å and 154.8 (5)° for the latter. The result also reveals that there is still great potential in the construction of those novel coordination polymers with highly flexible bis-triazole ligands.

Experimental

A mixture of MnCl₂.6H₂O (0.2 mmol, 46.6 mg), L (0.4 mmol, 96.8 mg) and H₂O (18.0 ml) in the molar radio of 1: 2:5000 was sealed in a 25 ml stainless steel reactor with Teflon liner and directly heated to 453 K ke pt at 453 K for 72 h, and then slowly cooled to 303 K at a rate for 4 K/h. Colorless block crystals of the title complex were collected by filtration and washed with ethanol (2 × 5 ml). Yield: 35%.

Refinement

The H atoms of the aromatic rings were placed at calculated positions, with C—H = 0.93 Å. All H atoms were assigned fixed isotropic displacement parameters, with $U_{iso}(H) = 1.2Ueq(C)$ or 1.5Ueq(O).

Figures

Fig. 1. A view of the local coordination of the Mn^{II} cations in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1 + x, -1/2 - y, -1/2 + z; (ii) -x, 1/2 - y; (iii) 1 - x, 1 - y, -z.]

Fig. 2. Schematic representation of the (4,4) network topology of (I) viewed down the c axis.

Fig. 3. Top (a) and side (b) views showing the packing of the grid layers in (I).

Poly[bis[μ -1,4-bis(1,2,4-triazol-1-ylmethyl)benzene- $\kappa^2 N^4$: N^4]dichloridomanganese(II)]

Crystal data	
$[MnCl_2(C_{12}H_{12}N_6)_2]$	F(000) = 622
$M_r = 606.39$	$D_{\rm x} = 1.446 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1682 reflections
a = 7.5863 (16) Å	$\theta = 2.8 - 23.5^{\circ}$
b = 21.925 (5) Å	$\mu = 0.70 \text{ mm}^{-1}$
c = 8.8442 (18) Å	T = 294 K
$\beta = 108.775 \ (4)^{\circ}$	Block, colorless

· / 1·

$V = 1392.8 (5) \text{ Å}^3$ Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer	2587 independent reflections
Radiation source: fine-focus sealed tube	1660 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.050$
phi and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.645, T_{\max} = 1.000$	$k = -19 \rightarrow 26$
7263 measured reflections	$l = -7 \rightarrow 10$

Refinement

Refinement on F^2	methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.090$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0412P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
2587 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
178 parameters	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

ъ.

·/ 1 /·

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.5000	0.5000	0.0000	0.03010 (18)
Cl1	0.15989 (9)	0.47621 (4)	-0.16003 (8)	0.0404 (2)
N1	0.4590 (3)	0.45414 (11)	0.2160 (3)	0.0350 (6)
N2	0.5081 (3)	0.42190 (13)	0.4681 (3)	0.0549 (8)

$0.20\times0.14\times0.08~mm$

N3	0.3232 (3)	0.42456 (11)	0.3864 (3)	0.0339 (6)
N4	-0.2711 (3)	0.14940 (11)	0.2963 (3)	0.0357 (6)
N5	-0.4262 (3)	0.17945 (12)	0.2994 (3)	0.0462 (7)
N6	-0.4061 (3)	0.08737 (11)	0.4162 (3)	0.0345 (6)
C1	0.5808 (4)	0.44071 (16)	0.3598 (4)	0.0528 (9)
H1	0.7087	0.4445	0.3815	0.063*
C2	0.2973 (4)	0.44391 (13)	0.2394 (3)	0.0372 (7)
H2	0.1814	0.4496	0.1626	0.045*
C3	0.1824 (4)	0.40794 (15)	0.4602 (3)	0.0451 (8)
H3A	0.0868	0.4391	0.4366	0.054*
H3B	0.2401	0.4061	0.5752	0.054*
C4	0.0941 (4)	0.34717 (14)	0.4007 (3)	0.0343 (7)
C5	-0.0630 (4)	0.34410 (15)	0.2691 (4)	0.0493 (8)
Н5	-0.1170	0.3799	0.2191	0.059*
C6	-0.1420 (4)	0.28890 (16)	0.2101 (4)	0.0528 (9)
Н6	-0.2486	0.2880	0.1210	0.063*
C7	-0.0655 (4)	0.23505 (14)	0.2810 (4)	0.0379 (7)
C8	0.0892 (4)	0.23780 (15)	0.4153 (4)	0.0462 (8)
H8	0.1405	0.2020	0.4675	0.055*
C9	0.1687 (4)	0.29315 (15)	0.4731 (4)	0.0450 (8)
Н9	0.2747	0.2941	0.5627	0.054*
C10	-0.1494 (4)	0.17476 (15)	0.2130 (4)	0.0494 (9)
H10A	-0.2205	0.1801	0.1010	0.059*
H10B	-0.0501	0.1460	0.2195	0.059*
C11	-0.2619 (4)	0.09541 (14)	0.3656 (3)	0.0363 (7)
H11	-0.1671	0.0671	0.3771	0.044*
C12	-0.5005 (4)	0.13984 (15)	0.3729 (3)	0.0420 (8)
H12	-0.6111	0.1476	0.3935	0.050*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0284 (3)	0.0335 (4)	0.0321 (3)	0.0000 (3)	0.0150 (3)	0.0012 (3)
Cl1	0.0284 (4)	0.0517 (5)	0.0421 (4)	-0.0048 (3)	0.0130 (3)	-0.0030 (4)
N1	0.0309 (13)	0.0435 (17)	0.0337 (14)	-0.0009 (11)	0.0147 (11)	0.0074 (11)
N2	0.0436 (17)	0.072 (2)	0.0460 (17)	-0.0027 (14)	0.0098 (14)	0.0184 (14)
N3	0.0342 (14)	0.0362 (16)	0.0342 (14)	-0.0088 (11)	0.0150 (12)	0.0015 (11)
N4	0.0338 (14)	0.0381 (17)	0.0365 (14)	-0.0072 (12)	0.0131 (11)	-0.0015 (11)
N5	0.0372 (15)	0.0432 (19)	0.0556 (17)	0.0008 (13)	0.0112 (13)	0.0039 (13)
N6	0.0284 (13)	0.0368 (17)	0.0402 (14)	-0.0008 (11)	0.0139 (11)	0.0026 (11)
C1	0.0334 (18)	0.074 (3)	0.053 (2)	0.0024 (17)	0.0168 (17)	0.0196 (18)
C2	0.0343 (17)	0.045 (2)	0.0317 (17)	-0.0052 (14)	0.0096 (13)	0.0052 (14)
C3	0.053 (2)	0.050 (2)	0.0429 (18)	-0.0138 (16)	0.0298 (16)	-0.0023 (15)
C4	0.0370 (17)	0.041 (2)	0.0308 (17)	-0.0088 (14)	0.0194 (14)	0.0019 (13)
C5	0.056 (2)	0.040 (2)	0.046 (2)	-0.0011 (17)	0.0080 (17)	0.0124 (15)
C6	0.052 (2)	0.055 (3)	0.039 (2)	-0.0102 (18)	-0.0037 (16)	0.0065 (16)
C7	0.0440 (19)	0.035 (2)	0.0407 (18)	-0.0093 (15)	0.0226 (15)	-0.0005 (14)
C8	0.0414 (19)	0.038 (2)	0.055 (2)	0.0044 (16)	0.0105 (17)	0.0117 (16)

C9 C10 C11 C12	0.0341 (18) 0.061 (2) 0.0314 (16) 0.0276 (16)	0.047 (2) 0.050 (2) 0.038 (2) 0.042 (2)	0.048 (2) 0.047 (2) 0.0403 (17) 0.058 (2)	-0.0074 (16) -0.0185 (17) 0.0006 (14) -0.0003 (15)	0.0036 (15) 0.0307 (17) 0.0122 (14) 0.0167 (15)	0.0023 (16) -0.0056 (16) 0.0005 (14) -0.0029 (16)
Geometric param	neters (Å, °)					
Mn1—N6 ⁱ		2.251 (2)	C2—H	2	0.93	00
Mn1—N6 ⁱⁱ		2.251 (2)	C3—C4	4	1.50	8 (4)
Mn1—N1 ⁱⁱⁱ		2.267 (2)	С3—Н	3A	0.97	00
Mn1—N1		2.267 (2)	С3—Н	3B	0.97	00
Mn1—Cl1 ⁱⁱⁱ		2.5655 (8)	C4—C:	5	1.37	3 (4)
Mn1—Cl1		2.5655 (8)	C4—C9	9	1.37	8 (4)
N1—C2		1.327 (3)	C5—C6	6	1.37	7 (4)
N1—C1		1.342 (3)	С5—Н	5	0.93	00
N2—C1		1.316 (3)	C6—C′	7	1.37:	5 (4)
N2—N3		1.357 (3)	C6—H	6	0.93	00
N3—C2		1.321 (3)	C7_C3	8	1.370	5 (4) 6 (4)
N3—C3 N4—C11		1.400(3) 1.325(3)	C8-C9))	1.30	8 (4)
N4—N5		1.356 (3)	C8—H	8	0.93	00
N4—C10		1.464 (3)	С9—Н	9	0.93	00
N5-C12		1.315 (4)	C10—H	H10A	0.97	00
N6—C11		1.320 (3)	C10—H	H10B	0.97	00
N6—C12		1.344 (4)	C11—H	H11	0.93	00
N6—Mn1 ^{iv}		2.251 (2)	C12—H	112	0.93	00
C1—H1		0.9300				
N6 ⁱ —Mn1—N6 ⁱⁱ		180.0	N3—C	3—НЗА	109.	3
N6 ⁱ —Mn1—N1 ⁱⁱⁱ		92.51 (8)	C4—C3	3—НЗА	109.3	3
N6 ⁱⁱ —Mn1—N1 ⁱⁱⁱ	i	87.49 (8)	N3—C	3—Н3В	109.1	3
N6 ⁱ —Mn1—N1		87.49 (8)	C4—C	3—Н3В	109.1	3
N6 ⁱⁱ —Mn1—N1		92.51 (8)	НЗА—	С3—Н3В	107.	9
N1 ⁱⁱⁱ —Mn1—N1		180.00 (12)	C5—C4	4—С9	117.8	8 (3)
N6 ⁱ —Mn1—Cl1 ⁱⁱⁱ	i	90.81 (6)	C5—C4	4—C3	120.4	4 (3)
N6 ⁱⁱ —Mn1—Cl1 ⁱⁱ	ii	89.19 (6)	C9—C4	4—C3	121.3	8 (3)
N1 ⁱⁱⁱ —Mn1—Cl1 ⁱ	iii	89.34 (6)	C4—C:	5—C6	121.2	2 (3)
N1—Mn1—Cl1 ⁱⁱⁱ		90.66 (6)	C4—C:	5—Н5	119.4	4
N6 ⁱ —Mn1—Cl1		89.19 (6)	C6—C:	5—H5	119.4	4
N6 ⁱⁱ —Mn1—Cl1		90.81 (6)	С7—С	6—C5	120.9	9 (3)
N1 ⁱⁱⁱ —Mn1—Cl1		90.66 (6)	C7—C	6—Н6	119.0	5
N1—Mn1—Cl1		89.34 (6)	C5—C0	6—Н6	119.0	6
Cl1 ⁱⁱⁱ —Mn1—Cl1		180.0	C6—C	7—С8	118.1	3 (3)
C2—N1—C1		101.8 (2)	C6—C	7—C10	120.0	6 (3)
C2—N1—Mn1		126.18 (18)	C8—C	7—C10	121.	1 (3)
C1—N1—Mn1		131.04 (18)	C7—C8	8—С9	120.	6 (3)

C1—N2—N3	101.7 (2)	С7—С8—Н8	119.7
C2—N3—N2	109.8 (2)	С9—С8—Н8	119.7
C2—N3—C3	128.3 (2)	C8—C9—C4	121.3 (3)
N2—N3—C3	121.9 (2)	С8—С9—Н9	119.4
C11—N4—N5	110.0 (2)	С4—С9—Н9	119.4
C11—N4—C10	128.7 (2)	N4—C10—C7	112.7 (2)
N5—N4—C10	121.2 (2)	N4—C10—H10A	109.0
C12—N5—N4	101.6 (2)	C7-C10-H10A	109.0
C11—N6—C12	102.3 (2)	N4—C10—H10B	109.0
C11—N6—Mn1 ^{iv}	127.6 (2)	C7C10H10B	109.0
C12—N6—Mn1 ^{iv}	128.76 (18)	H10A—C10—H10B	107.8
N2—C1—N1	115.9 (3)	N6—C11—N4	110.5 (3)
N2—C1—H1	122.1	N6—C11—H11	124.8
N1—C1—H1	122.1	N4—C11—H11	124.8
N3—C2—N1	110.8 (2)	N5—C12—N6	115.6 (2)
N3—C2—H2	124.6	N5—C12—H12	122.2
N1—C2—H2	124.6	N6—C12—H12	122.2
N3—C3—C4	111.7 (2)		
N6 ⁱ —Mn1—N1—C2	69.1 (2)	N3—C3—C4—C5	-90.4 (3)
N6 ⁱⁱ —Mn1—N1—C2	-110.9 (2)	N3—C3—C4—C9	88.3 (3)
N1 ⁱⁱⁱ —Mn1—N1—C2	-133 (100)	C9—C4—C5—C6	-0.9 (4)
Cl1 ⁱⁱⁱ —Mn1—N1—C2	159.9 (2)	C3—C4—C5—C6	177.9 (3)
Cl1—Mn1—N1—C2	-20.1 (2)	C4—C5—C6—C7	-0.2 (5)
N6 ⁱ —Mn1—N1—C1	-97.5 (3)	C5—C6—C7—C8	1.8 (5)
N6 ⁱⁱ —Mn1—N1—C1	82.5 (3)	C5—C6—C7—C10	-178.3 (3)
N1 ⁱⁱⁱ —Mn1—N1—C1	60 (100)	C6—C7—C8—C9	-2.4 (4)
Cl1 ⁱⁱⁱ —Mn1—N1—C1	-6.7 (3)	C10—C7—C8—C9	177.7 (3)
Cl1—Mn1—N1—C1	173.3 (3)	C7—C8—C9—C4	1.3 (5)
C1—N2—N3—C2	0.2 (3)	C5—C4—C9—C8	0.3 (4)
C1—N2—N3—C3	-179.4 (3)	C3—C4—C9—C8	-178.5 (2)
C11—N4—N5—C12	0.0 (3)	C11—N4—C10—C7	-124.3 (3)
C10-N4-N5-C12	175.2 (2)	N5—N4—C10—C7	61.5 (4)
N3—N2—C1—N1	-1.0 (4)	C6—C7—C10—N4	-98.4 (3)
C2—N1—C1—N2	1.4 (4)	C8—C7—C10—N4	81.5 (4)
Mn1—N1—C1—N2	170.3 (2)	C12—N6—C11—N4	-0.1 (3)
N2—N3—C2—N1	0.7 (3)	Mn1 ^{iv} —N6—C11—N4	167.33 (17)
C3—N3—C2—N1	-179.7 (3)	N5—N4—C11—N6	0.1 (3)
C1—N1—C2—N3	-1.2 (3)	C10—N4—C11—N6	-174.7 (2)
Mn1—N1—C2—N3	-170.87 (18)	N4—N5—C12—N6	-0.1 (3)
C2—N3—C3—C4	74.3 (4)	C11—N6—C12—N5	0.1 (3)
N2—N3—C3—C4	-106.2 (3)	Mn1 ^{iv} —N6—C12—N5	-167.11 (19)

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) x+1, -y+1/2, z-1/2; (iii) -x+1, -y+1, -z; (iv) -x, y-1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A

C9—H9…N5 ^v	0.93	2.61	3.523 (4)	168.	
C11—H11····Cl1 ^{vi}	0.93	2.77	3.635 (3)	155.	
Symmetry codes: (v) $x+1$, $-y+1/2$, $z+1/2$; (vi) x , $-y+1/2$, $z+1/2$.					

Fig. 1

Fig. 3

